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ABSTRACT
Dense subgraph discovery is a fundamental primitive in graph and
hypergraph analysis which among other applications has been used
for real-time story detection on social media and improving access
to data stores of social networking systems. We present several
contributions for localized densest subgraph discovery, which seeks
dense subgraphs located nearby given seed sets of nodes. We �rst
introduce a generalization of a recent anchored densest subgraph
problem, extending this previous objective to hypergraphs and also
adding a tunable locality parameter that controls the extent towhich
the output set overlaps with seed nodes. Our primary technical
contribution is to prove when it is possible to obtain a strongly-
local algorithm for solving this problem, meaning that the runtime
depends only on the size of the input set. We provide a strongly-
local algorithm that applies whenever the locality parameter is
not too small, and show via counterexample why strongly-local
algorithms are impossible below a certain threshold. Along the way
to proving our results for localized densest subgraph discovery,
we also provide several advances in solving global dense subgraph
discovery objectives. This includes the �rst strongly polynomial
time algorithm for the densest supermodular set problem and a �ow-
based exact algorithm for a heavy and dense subgraph discovery
problem in graphs with arbitrary node weights. We demonstrate
our algorithms on several web-based data analysis tasks.
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1 INTRODUCTION
A common paradigm in unsupervised data analysis is to take as
input a graph or hypergraph and to output extremal subsets. The
types of extremal subsets range from sets of minimum cut [48] to
minimum sparsest cut [41] to maximum clique [8]. The underlying
hypothesis is that extremal sets re�ect important and noteworthy
structures that are informative for exploratory data analysis, or
useful for downstream algorithms such as graph partitioners or ma-
chine learning pipelines that operate on subsets of the larger graph.
This basic paradigm is fundamental in Web analysis and applied
to problems such as detecting real-time stories on social media [6],
improving access to data stores of social-networking systems [21],
and a wide variety of clustering and community detection tasks
over web-based datasets [4, 18, 31, 38, 55].

An issue with this paradigm is that there are many cases where
extremal sets are trivial or simply unuseful. For instance, the mini-
mum cut set in an unweighted graph with any degree 1 node is just
that single node, which yields little information; a set of minimum
conductance may be a simple small subgraph that just happens
to have a small number of bridges to the rest of the graph [38].
A second and related challenge is that �nding the extremal sub-
set typically results in an NP-complete problem. Even if solved
approximately, it may still consume substantial time.

Localized graph algorithms are a practical solution to this prob-
lem. The idea is that we rephrase the extremal search problem
with respect to a reference set of nodes '. For instance, we may
want the solution within ' or nearby ' with some measure of
distance or fraction of '. This area has been most developed in
the space of algorithms for �nding small conductance cuts in a
graph where techniques range between spectral methods [3, 4],
�ow methods [5, 19, 35, 44, 56, 57], and heat-kernel di�usions [33].
These techniques have also been extended to hypergraph anal-
ysis [28, 29, 40, 49, 53]. For methods that e�ectively grow small
subsets, ' may be as small as a single node; whereas for other tech-
niques that shrink or adapt ', then ' must be considerably larger.
Often, a goal with these algorithms is to get a strongly localized
runtime guarantee such that the total runtime scales with the size
of the output instead of the size of the input graph. Using a localized
algorithm enables one to analyzemany interesting sets in the graph
by varying '. Localized algorithms have already been widely used
in web-based data analysis tasks such as detecting related retail
products on Amazon [33, 52, 56], identifying groups of same-topic
posts on Stackover�ow [52], and �nding communities in various
types of online social networks [33, 56, 57].

Although many extremal set problems in graph analysis focus on
�nding small cut values, another perspective on extremal sets seeks
high density independently of cut values. The densest subgraph is
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one such example that seeks a subgraph ( of maximum average de-
gree. In a small surprise, this subset can be computed in polynomial
time by a classic �ow algorithm [22] or via linear programming [10].
A simple peeling algorithm that removes vertices from the graph
one at a time has long been known to be a 2-approximation for
the problem [10]. More recently, Boob et al. proposed an iterated
peeling algorithm that has been shown to converge to the optimal
solution [11]. Many variants and generalizations of the densest
subgraph problem have been studied and considered (see [34] for a
very recent survey). One of the most general of these is the dens-
est supermodular subset problem (DSS) introduced by Chekuri et
al. [11], where the goal is to maximize the ratio between a nonnega-
tive monotone supermodular function 5 and the size of the returned
set. Localized variants of the densest subgraph problem have also
been considered recently [15]. However, localized algorithms for
dense subgraph discovery remain underexplored and remain far
less understood than localized algorithms for �nding small cuts.

In this paper we greatly expand the scope of possible algorithms
for dense subgraph computations, both in terms of global and local
variants of the problem. We �rst provide a simple reduction that
leads to e�cient exact algorithms for a more general version of
the densest supermodular subset (DSS) problem where the super-
modular function does not need to be nonnegative (Theorem 1).
This captures several dense subgraph problems that are not spe-
cial cases of the standard nonnegative DSS problem [15, 42]. We
then provide the �rst strongly polynomial algorithm for DSS (Al-
gorithm 1, Theorem 2); previous approaches came with weakly
polynomial runtimes. Our �nal contribution to global dense sub-
graph discovery algorithms is to design a �ow-based exact algo-
rithm for �nding the densest subset of a node-weighted graph or
hypergraph. Prior research on this problem showed how to obtain
e�cient �ow-based solutions in the case of graphs with strictly
non-negative weights [17, 22]; our results show how this can be
extended to arbitrary node weights (Section 5.1).

In addition to our results for global dense subgraph discovery,
we greatly advance the state of the art in localized densest sub-
graph computations (Section 5.2). First, we establish a parametric
formulation of the discrete objective function underlying localized
densest subgraph discovery (Problems 5, 6). This allows us to vary
the degree of localization and continuously tradeo� between the
degree of localization and the amount of computation. We explicitly
delineate the region of strong locality where algorithms can have a
runtime that scales independently of graph size (Theorem 4). More-
over, we show hypergraph generalizations of all of these algorithms.
Our methods use max-�ow / min-cut computations as a primitive
and we show (in the appendix) counter-examples where standard
peeling methods cannot approximate these objectives at all.

We demonstrate the advantages of the techniques on a variety of
web-relevant datasets. This includes a hypergraph of web domains
where hypergraphs are induced by hosts (Section 6.1). We show
how our localized algorithms can help identify a densely connected
set of about 1300 academic domains around the world.

2 PRELIMINARIES AND RELATEDWORK
Let⌧ = (+ , ⇢) denote a graph with vertex set+ and edge set ⇢. Let
H = (+ , E) be a hypergraph with vertex set+ and hyperedge set E.

Table 1: Two kinds of degrees we consider.

Normal Fractional
Degree deg(E) =

Õ
43E 1 deg(E) =

Õ
43E

1
|4 |

Volume Vol(() =
Õ

E2( deg(E) Vol(() =
Õ

E2( deg(E)
Maximum �(() = maxE2( deg(E) �̄(() = maxE2( deg(E)

Each hyperedge 4 2 E is a subset of+ and a graph is the special case
of a hypergraph with |4 | = 2. Our results for hypergraphs focus on
unweighted and undirected hyperedges without self-loops, though
the techniques can be easily extended to weighted hyperedges.
At the same time, our results in some cases rely on reductions to
weighted and directed graphs. By default, we use DE to denote a
directed edge from vertex D to E , and a set of nodes {E1, . . . , E: } to
denote a hyperedge. For a hypergraph, let A = max42E |4 | denote
its rank. For a (hyper)graph and a set ( , let 4 [(] denote the number
of (hyper)edges fully contained in ( .

Throughout this paper, we mainly consider two kinds of degrees,
the de�nitions of them and their corresponding volumes and maxi-
mums are summarized in Table 1.We have the following connection
between degree and fractional degree.

L���� 1. For a hypergraph, we have

2deg(E)6346(E)6Adeg(E), and as
a result 2Vol(()6Vol(()6AVol(().

P����. Because we focus on hypergraphs without self-loops,
2deg(E) =

Õ
42E:43E

2
|4 | 6 Õ

42E:43E 1. Since A = max42E |4 |,

Adeg(E) =
Õ
42E:43E

A
|4 | >

Õ
42E:43E 1. ⇤

To evaluate any set function 5 : 2+ ! R we assume it is avail-
able as a value oracle as is standard practice. A set function 5 is
normalized if 5 (;) = 0 and nonnegative if 5 (() > 0,8( ✓ + .
Further, let ⇢$ (5 ) be the maximum amount of time to evaluate
5 (() for a subset ( ✓ + and " (5 ) be an upper bound for |5 (() |
for all ( ✓ + . A set function 5 is supermodular if and only if
5 (() + 5 () ) 6 5 (( \) ) + 5 (( [) ) for any (,) ✓ + , and accord-
ingly 5 is submodular if �5 is supermodular. A function is modular
if it is both supermodular and submodular. Note that a normalized,
nonnegative and supermodular set function 5 is monotone. More-
over, we call a set function cardinality-based if 5 (() = 5 () ), for all
(,) ⇢ + with |( | = |) |, and asymmetric if there exist ( ⇢ + where
5 (() < 5 (+ \ ().

2.1 Graph Cut and Hypergraph Cut
Densest subgraph discovery (DSG) has a close connection with
graph cut problems as the decision version of DSG is solvable by
reducing it to a graphmin B-C cut problem [22]. Herewe brie�y intro-
duce some graph cut concepts that will show up in the following dis-
cussion. For a weighted directed graph⌧ = (+ , ⇢,F : ⇢ ! R) and a
set ( , the value of its induced cut is cut⌧ (() =

Õ
D2(,E2(̄

F ({D, E}).
The graph min B-C cut problem is to �nd the minimal graph cut
while enforcing B 2 ( and C 2 (̄ . In other words, min-st-cut⌧ =
min(⇢+ :B2(,C 2(̄ cut⌧ (().

The introduction of hyperedges enables a variety of de�nitions
of cut as one hyperedge can be cut in more than one way now.
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Here we adopt a recent generalized notion of a hypergraph cut
function [39, 52]. Given a hypergraphH = (+ , E), associate each
hyperedge 4 with a splitting function F4 : 24 ! R>0 that maps
each subset � ✓ 4 to a nonnegative splitting penalty. The value
F4 (�) indicates the penalty when (\4 = �. Then for one vertex set
( ✓ + , the cut penalty it incurs is cutH(() =

Õ
42E F4 (( \ 4). The

corresponding hypergraph min B-C cut problem is min-st-cutH =
min(⇢+ :B2(,C 2(̄ cutH(().

2.2 Related Work
The classic densest subgraph problem is de�ned as

P������ 1 (D������ S������� (DSG)). Given a graph ⌧ =
(+ , ⇢), �nd a vertex set ( maximizing the fraction 4 [(]/|( |. 1

DSG and its variants have received signi�cant attention over
the past a few decades. They mainly admit two categories of exact
solutions, one is �ow-based [22] and the other one is based on a
linear program (LP) [10]. One popular approximation algorithm for
DSG and some variants is greedy peeling [10], which runs in linear
time and is much faster than exact solutions. One variant of DSG,
called densest subhypergraph (DSHG), is same as Problem 1 except
the graph ⌧ is replaced by a hypergraph H [25, 26]. For a detailed
introduction, refer to the recent tutorial [51] and survey [34].

Recently [9] introduces an iterative peelingmethod for Problem 1
called Greedy++ which shows quick convergence to the optimum.
Then [11] showed that Greedy++ achieves a (1 � Y)-approximation
in $ (1/Y2) iterations and extends iterative peeling to a broader
class of problems called densest supermodular subset (DSS).

P������ 2 (D������ S����������� S����� (DSS) [11]). Given
a normalized, nonnegative monotone supermodular function 5 :
2+ ! R>0, maximize 5 (()/|( |.

This is an important breakthrough because numerous DSG vari-
ants are special cases of Problem 2 [17, 22, 25, 50, 54]. Therefore
iterative peeling o�ers a faster algorithm for them compared with
�ow and LP. Moreover, [24] proposes an even faster and more scal-
able iterative algorithm for Problem 2 based on solving the quadratic
relaxation of the dual of Charikar’s LP. Although iterative peeling
converges fast in practice, it is hard to terminate as soon as some
user-de�ned approximation ratio is achieved as the optimum is not
known in advance. Recently, [17] tackles this issue for a subclass
of Problem 2, heavy and dense subgraph with nonnegative vertex
weights.

Besides the line of designing faster global algorithms for DSG
and its variants, there is some recent interest in studying seeded
variants of DSG where a seed set ' is given and the objective is to
�nd a densest subgraph around this seed set [15, 17, 47]. Of these,
only [15] provides an objective that gives a strongly local algorithm,
meaning that the optimal answer is found only by exploring a small
portion of the whole graph, via the objective:

P������ 3 (A������� D������ S������� (ADS)). Given a
graph⌧ = (+ , ⇢) and a seed set ' ⇢ + , �nd a vertex set ( maximizing�
24 [(] � Vol(( \ '̄)

�
/|( |.

In Problem 3, the bias towards the seed set is encoded by adding
penalties onto vertices outside the seed set. Here for simplicity we
1We always treat 0/0 = �1 and1 · 0 = 0.

omit the strict anchor set� de�ned in the ADS problem [15], but all
our results and analysis go through with this additional constraint.

3 GENERAL DENSE SUPERMODULAR SUBSET
The function 24 [(] � Vol(( \ '̄) in Problem 3 is a normalized su-
permodular function as 4 [(] is supermodular and Vol(( \ '̄) is
modular. But it is not a special case of Problem 2 as this function is
not guaranteed to be nonnegative. This inspires our broader class:

P������ 4 (D������ S����������� S����� ���� P�������
N������� V�����). Given a normalized supermodular function 5 :
2+ ! R, maximize 5 (()/|( |.

In addition to the anchored densest subgraph objective men-
tioned above, this new formulation also generalizes the objective
max(⇢+

�
4 [(] � Ucut⌧ (()

�
/|( | considered in [42] . We prove the

following connection between this extension and the class DSS.

T������ 1. For any normalized supermodular function 5 : 2+ !
R, one can construct a normalized, nonnegative monotone supermod-
ular function 6 : 2+ ! R>0 such that

argmax
(⇢+

5 (()/|( | = argmax
(⇢+

6(()/|( |

and 6 can be constructed in $ ( |+ |⇢$ (5 )) time.

P����. Let ⇠ = max{0,maxE2+ �5 ({E})}, in other words ⇠ is
the smallest nonnegative quantity such that ⇠ + 5 ({E}) > 0,8E 2
+ . Then we construct 6 as 6(() B 5 (() + ⇠ |( |,8( ⇢ + . Since
⇠ |( | is modular, 6 is still supermodular. Observe that because 5 is
supermodular, for any set ( = {E1, E2, . . . , E |( | } ⇢ + , we have6(() =
5 (() +⇠ |( | > 5 (( \ {E1}) + 5 ({E1}) +⇠ |( | > . . . > Õ |( |

8=1 5 ({E8 }) +
⇠ |( | > 0 which means that 6(() is nonnegative and implies that
6(() is monotone. Thus,

max
(⇢+

5 (()/|( | +⇠ = max
(⇢+

6(()/|( |.

And ⇠ can be computed by querying 5 ({E}) for each E 2 + , which
can be done in $ ( |+ |⇢$ (5 )) time. ⇤

This theorem implies that any exact algorithm for DSS will re-
main as an exact algorithm for the extended Problem 4, such as
using linear programming or combining binary search with re-
peated submodular minimization.

While extending the de�nition to non-negative valued functions
may seem a minor change as it is easy to adapt exact algorithms,
this change has large implications for approximation algorithms.
For instance, the e�cient greedy peeling fails to hold a constant
approximation ratio. In the Appendix B, we show one example
where greedy peeling may perform arbitrarily badly. Even for the
recent iterative peeling approach [11], the picture is more complex
and the bounds are not straightforward. That said, we hypothesize
that iterative peeling remains an e�ective practical heuristic.

4 A STRONGLY POLYNOMIAL ALGORITHM
Strongly polynomial algorithms are those having a running time
bounded by a polynomial of the number of input numbers instead
of their size. In the context of Problem 4, a strongly polynomial
algorithm is one whose runtime is dependent on |+ |, ⇢$ (5 ) but
independent of" (5 ).
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Algorithm 1 Density Improvement Framework for Problem 4

Input: Anormalized supermodular function 5 : 2+ ! R via oracle
Output: (⇤ maximizing 5 (()/|( |.
1: (0  + , C  0
2: repeat
3: C  C + 1, VC  3 ((C�1)
4: Find an (C maximizing VC |( | � 5 (()
5: until VC |(C | � 5 ((C ) = 0
6: return (C�1

As mentioned before, two common exact solutions for Problem 4
are linear programming or combining binary search with submod-
ular minimization. However, neither of those two algorithms are
strongly polynomial. In particular, there is no strongly-polynomial
time solution for linear programming. Meanwhile, given a problem
instance of Problem 4, one can binary search the optimum and an-
swer the decision problem that given a parameter V , decide whether
there exists one set ( with 5 (()/|( | > V . However, the range to
perform binary search and the termination condition both depend
on" (5 ). For example, for the simplest case that 5 is nonnegative
and integral, we have " (5 ) = 5 (+ ) = max(⇢+ 5 ((). Thus the
optimum falls into the range [0, 5 (+ )] and for any two (,) ⇢ +
with 5 (()/|( | and 5 () )/|) | di�erent, the minimum gap between
5 (()/|( | and 5 () )/|) | is 1/|+ |

2. This means the binary search takes
$ (log(" (5 ) |+ |

2
)) iterations. Hence it has a dependence on" (5 )

and is not strongly polynomial.2
Inspired byDinklebach’s algorithm [16], we give a simple strongly

polynomial algorithm framework for a general normalized super-
modular function 5 in Algorithm 1. Each iteration minimizes a
submodular function in strongly polynomial time [30, 36, 45, 46].
And thus, we call it a density improvement framework as in each
iteration the answer gets improved. More importantly, we will also
show in numerical experiments that this in fact can be much faster
than alternatives based on binary search commonly used in the
literature.

The following standard result shows optimality at termination,
of which proof is included in Appendix A.1.

L���� 2. For a normalized, supermodular function 5 : 2+ ! R,
and a given parameter V ,min(⇢+ V |( |� 5 (() < 0 if and only if there
exists a set ( such that 5 (()/|( | > V . As a result, min(⇢+ V |( | �
5 (() = 0 if and only if max(⇢+ 5 (()/|( | 6 V .

Suppose Algorithm 1 runs for) iterations. By Lemma 2, V) |() |�
5 (() ) = 0 suggests that

max
(⇢+

5 (()/|( | 6 V) = 5 (()�1)/|()�1 |,

which means ()�1 is optimal. We make one important observation
that the size of (C is strictly decreasing. This is intuitive since we can
view V |( | as an ✓1-norm penalty on |( |, thus with penalty coe�cient
V increasing, the size of the solution to min(✓+ V |( | � 5 (() tends
to decrease. By our algorithm design, 8C < ) ,

VC |(C | < 5 ((C ), (1)

2This statement holds for a general function 5 . For speci�c 5 , we may have that" (5 )
is a simple function of |+ | or |⇢ | and binary search would be strongly polynomial.

because we terminate the algorithm once at a point we get VC |(C | =
5 ((C ). As 5 is normalized, for C < ) , (C is non-empty. Hence Equa-
tion (1) implies 8C < ) ,

VC < 5 ((C )/|(C | = VC+1, (2)

where the equality follows from the de�nition of VC . This means
the sequence of V is strictly increasing. By our algorithm design, for
8C > 0, (C is the minimizer of VC |( | � 5 ((), hence we have 8C > 0

VC |(C | � 5 ((C ) = min
(⇢+

VC |( | � 5 (() 6 VC |(C+1 | � 5 ((C+1). (3)

Observe that via Equation (2), we have 8C < ) � 1,

5 ((C )/|(C | = VC+1 < VC+2 = 5 ((C+1)/|(C+1 |.

which further shows that 8C < ) � 1,

VC+1 |(C+1 | � 5 ((C+1) < 0 = VC+1 |(C | � 5 ((C ). (4)

Combining Equations (3) and (4), we get 81 6 C < ) � 1

VC ( |(C | � |(C+1 |) 6 5 ((C ) � 5 ((C+1) < VC+1 ( |(C | � |(C+1 |) .

As VC < VC+1 for 8C < ) , we get for all 1 6 C < ) � 1,

|(C | > |(C+1 |.

Notice that if ) > 1, then 3 ((1) = V2 > V1 = 3 ((0) = 3 (+ ) where
the last equality is because of our choice of (0. Thus (1 < + and
|(1 | < |+ | = |(0 |.

Based on the discussion above, we have the following result.

T������ 2. Assume the density improvement procedure termi-
nates after ) iterations, then we have

• 8C < ) , VC < VC+1.
• 8C < ) � 1, |(C | > |(C+1 |.

As a result, this procedure will terminate after at most |(0 |+1 = |+ |+1
iterations and the algorithm runs in strongly polynomial time.

This conclusion shows that Algorithm 1 will iteratively decrease
the size of the solution. The supermodularity of 5 ensures that Line
4 of Algorithm 1 can be done in strongly polynomial time. As a
result, the whole procedure is strongly polynomial. We can see that
in each iteration, when minimizing VC |( | � 5 ((), the minimization
algorithm does not matter much as long as it is strongly polynomial.

Also here for simplicity of analysis, we take (0 = + , but we can
always start from some better initial sets and there is some potential
to reuse information from previous solutions, which is sometimes
more useful than solving the whole problem from scratch. The
bound on the number of iterations is also rather loose, in other
words, we believe in practice the number of iterations may be
> ( |+ |). Moreover, the supermodularity of 5 is not necessary as long
as 5 has some special properties which enable a strong polynomial
algorithm for minimizing V |( | � 5 (().

5 ANCHORED DENSEST SUBHYPERGRAPH
We now turn to concrete special cases of Problem 4 that focus on
returning dense subhypergraphs that are localized around a given
seed set in a hypergraph.

P������ 5 (A�������D������ S������������ (ADSH)). Given
a hypergraph H = (+ , E), a locality parameter Y > 0 and a seed
set ' ⇢ + , �nd a vertex set ( maximizing 3 (() = (4 [(] � YVol(( \
'̄)/2)/|( |, where '̄ = + \ ' is the complement set of '.
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P������ 6 (A������� D������ S������������ ���� F����
������ V����� (ADSH�F)). Given a hypergraph H = (+ , E), a
locality parameter Y > 0 and a seed set ' ⇢ + , �nd a vertex set (
maximizing 3̄ (() = (4 [(] � YVol(( \ '̄))/|( |, where '̄ = + \ ' .

These problems are inspired by ADS (Problem 3) and we general-
ize it by applying to hypergraphs and including a locality parameter.
They use the two di�erent types of hypergraph volume and ADSH-
F avoids situations where large hyperedges incur extremely large
penalties. We focus results on ADSH in the interest of space.

5.1 A Flow-Based Exact Algorithm
We �rst introduce a �ow-based exact algorithm that applies to the
following problem that generalizes Problems 5 and 6:

max
�
4 [(] � ? (()

�
/|( |, ? : + ! R>0 . (5)

Throughout the paper, for any ? : + ! R and vertex set ( ⇢
+ , we let ? (() =

Õ
E2( ? (E) denote the summation of entries of

? indexed by ( . We show how to solve this by reducing it to a
sequence of generalized hypergraph B-C cut problems, which can
be solved in turn via reduction to graph B-C cut problems using
existing techniques [52].

Consider the decision version of Eq. (5). For a parameter V , there
exists an ( such that

�
4 [(] � ? (()

�
/|( | > V if and only if there

exists an ( such that ? (() + V |( | � 4 [(] < 0. We have that 4 [(] =
Vol(() �

Õ
42E 64 (() where 64 (() = min 1

|4 | {|4 \ ( |,1|4 \ ( |}, as

4 [(] =
’
42E

{4⇢( } =
’
42E

✓
|4 \ ( |

|4 |
� 64 (()

◆
(6)

=
’
E2(

’
43E

1
|4 |
�

’
42E

64 (() = Vol(() �
’
42E

64 (().

We can therefore verify whether there exists an ( such that ? (() +
V |( | � 4 [(] < 0 by solving a hypergraph min B-C cut problem on
the extended hypergraph HV constructed as follows:
• Keep all of H = (+ , E) and for each hyperegdge 4 , assign one
splitting function 64 (() = min 1

|4 | {|4 \ ( |,1|4 \ ( |}.
• Introduce one super source B and create one edge {B, E} with
weight deg(E) for each E 2 + .

• Introduce one super sink C and create one edge {E, C} with weight
V + ? (E) for each E 2 + .

We focus here on the case where V > 0 since the optimal solutions
to Problems 5 and 6 are always nonnegative. Note however that we
can also handle V < 0 using slight adjustments to the construction
above. We refer to edges directed connected to B or C terminal edges,
denoted by E

BC . Their splitting function is the same as the cut
function for a standard graph: the penalty is 0 if the edge is not
cut and otherwise is equal to the weight of the edge. Every ( ⇢ +
induces a hypergraph B-C cut onHV with value

cut(( [ {B}) =
’
E2(̄

deg(E) +
’
E2(

�
? (E) + V

�
+

’
42E

64 (() (7)

= Vol((̄) + V |( | + ? (() +
’
42E

64 (()

= Vol(H) � 4 [(] + V |( | + ? (() .

where the last equality is due to Eq. (6). We summarize as:

O���������� 1. The minimum B-C cut of HV is strictly smaller
than Vol(H) if and only if there exists ( with

�
4 [(] � ? (()

�
/|( | > V .

For each 4 2 E, the splitting function64 is submodular, cardinality-
based and asymmetric. Under these conditions, Veldt et al. have
shown how to reduce a generalized hypergraph B-C cut problem to
a graph B-C cut problem [52]. We include details here for complete-
ness. For this reduction, no change needs to be made to terminal
edges, since by construction they already involve only two nodes.
As shown in [25, 52], each 4 2 E can be replaced by the following
gadget
• Introduce one auxiliary node E4 .
• For each E 2 4 , introduce a directed edge from E to E4 with weight

1
|4 | , and a directed edge from E4 to E with weight1.

This leads to a new directed graph⌧H on an augmented node set.
For any ( ⇢ + , if we include E4 on the same side of ( , then we
incur a directed cut penalty of1|4 \ ( |/|4 |, otherwise the incurred
directed cut penalty is |4 \ ( |/|4 |. The minimum B-C cut solution
in ⌧H will naturally place the auxiliary node E4 in a way that
incurs the minimum possible penalty subject to the placement of
the original node set+ . Therefore, for a node set ( ✓ + , the penalty
incurred because of nodes in hyperedge 4 is exactly 64 (().

With this core algorithmic step, what is left is to determine
what Vs to test. The density improvement framework introduced
in Section 4 applies here and provides a strongly polynomial algo-
rithm. One could also use binary search, as done in many densest
subgraph variants. Observe that the answer falls in the interval
[�? (+ ), |E |]. When ? is integral or rational, there exists some pre-
determined smallest gap between any two possible non-equal val-
ues of

�
4 [(] � ? (()

�
/|( |, and we can determine the termination

condition accordingly. When ? is irrational, although this strategy
fails, we can still apply parametric �ow to solve it, as in [22].

New results for DSG in vertex-weighted graphs. We note
in passing that our approach for solving Problem 5 implies more
general results for solving densest subgraph problems in vertex-
weighted graphs. The following problem was introduced in [22]
and later considered in [17].

P������ 7 (H���� ��� D���� S������� P������ (HDSP)).
Given an undirected graph (⌧,+ , ⇢,F+ ,F⇢ ) without self-loops, where
F+ : + ! R>0 andF⇢ : ⇢ ! R>0, �nd (⇤ ⇢ + such that

(⇤ = argmax
(⇢+

4 [(] +
Õ

E2( F+ (E)

|( |
,

where 4 [(] is the sum of the weights of edges fully contained in ( .

This problem explicitly considers weighted edges. Note that our
approach for solving Objective 5 can easily be extended to weighted
settings as well by scaling hyperedges (and the resulting edges in
the reduced graph). While HDSP focuses only on standard graphs,
our approach applies more generally to hypergraphs. Furthermore,
while HDSP focuses on nonnegative vertex weights, our approach
e�ectively deals with nonpositive vertex weights. Combining our
techniques with Goldberg’s �ow network for HDSP [22] leads to
the following stronger result.

O���������� 2. There is an e�cient �ow-based exact algorithm
for any problem of the form max(⇢+

�
4 [(] + ? (()

�
/|( |, where ? :

+ ! R is a vertex function with no sign constraint.
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5.2 A Strongly-local Flow Algorithm
We now show how to design a strongly-local algorithm for Prob-
lem 5, meaning that the runtime depends only on the size of '.
Showing how to obtain a runtime that is independent of global
graph properties is the most technically challenging contribution
of our paper. Our goal here is to strike a balance between obtaining
strong theoretical guarantees of this form while ensuring the algo-
rithm is practical. Thus, rather than pursuing the tightest possible
analysis, we focus on providing the simplest exposition that leads
to a runtime that is bounded exclusively in terms of |' | and Vol(').

We �rst provide high-level intuition as to why strongly-local al-
gorithms are possible. For Problem 5, we have ? (() = YVol((\ '̄)/2.
This means that in the directed graph ⌧H presented in Section 5.1,
every vertex from the original hypergraph will have one directed
edge from the source node B with weight deg(E) and one directed
edge to the sink node C with weight V +YVol(E\'̄)/2. When solving
a maximum B-C �ow problem in this graph, if Y is large enough we
can pre-route a signi�cant amount of �ow and saturate many of
the edges leaving the source node B . In particular, for large enough
Y, pre-routing �ow in this way will saturate all edges (B, E) for each
E 2 '̄. In the remaining residual graph, the B will only be adjacent
to nodes in ', and the total weight of edges leaving B will be much
smaller than the total weight of edges entering C . In this way, the
maximum B-C �ow value will be bounded in terms of the size of '
(rather than the size of the whole graph), and by carefully solving
a sequence of smaller �ow problems “nearby” ' we will be able to
�nd the minimum B-C cut of the entire graph⌧H without having to
visit all of its nodes and edges. In what follows we provide complete
details for formalizing this intuition. Formally, we prove for Y > 1,
Problem 5 can be solved exactly by a strongly-local algorithm.

We assume throughout our analysis that 3 (') = ⌦(1). In other
words, the subhypergraph induced by' has a density lower bounded
by some universal constant. This will simplify the technical exposi-
tion without signi�cantly changing the analysis. We could alterna-
tively weaken this to a natural assumption that ' contains at least
one hyperedge, which would only change the analysis slightly.

As a warm-up we prove that when Y > 2, Problem 5 is equivalent
to �nding the densest subhypergraph within '. A strongly-local
algorithm can then easily be obtained by considering only subsets
of '. This provides additional intuition as to why strongly-local
algorithms are possible for large enough Y.

L���� 3. When Y > 2, max(⇢+ 3 (() , max(⇢' 3 (().
The proof is provided inAppendix A.2.We nowpresent a strongly-

local algorithm for 1 6 Y < 2. We �rst bound the range of values
containing the optimal value 3⇤.

L���� 4. Let 3⇤ = max(⇢+ 3 ((), then for 1 6 Y < 2,

�̄(') > 3⇤ > max
(⇢'

3 (() > 3 (') = ⌦(1) .

The proof is provided in Appendix A.3. Hence, we only need
to test those Vs falling into this range of values that contains 3⇤.
Recall that for a given parameter V , one can verify whether there
exists one set ( such that

�
4 [(] � ? (()

�
/|( | > V by minimizing

? (() + V |( | � 4 [(] and comparing the minimum to 0. Since ? (() =
YVol(( \ '̄)/2, we speci�cally minimize

YVol(( \ '̄)/2 + V |( | � 4 [(] . (8)

The following lemma bounds the size of the optimal set (⇤ =
argmax(✓+ 3 ((), and the degree of nodes in (⇤, in terms of the
quantities that depend only on '.

L���� 5. When Y > 1, let (⇤ = argmax(✓+ 3 ((), then we have

(1) |(⇤ | 6 Vol(').
(2) 8E 2 (⇤, deg(E) = $ (Vol(') + �(')) .

Appendix A.4 provides a proof. This Lemma implies that when
searching for the optimal (⇤, we can ignore vertices with very high
degrees. This is done by adding a directed edge from those vertices
to C with weight1. These edges will never be a part of the minimum
B-C cut, meaning that these vertices will never be part of ( .

The main challenge is to �nd a minimum B-C cut in HV in a
strongly-local manner. Recall from the construction of HV in Sec-
tion 5.1 that for every vertex E 2 + , there is an edge (B, E) and
another edge (E, C). This means that the minimum B-C cut solution
will have to cut one of these two edges for each vertex. Note that
we can equivalently alter HV so that each vertex in '̄ has either
an edge to the source B or sink C but not both. Concretely, for each
E 2 '̄, we can remove the edge connected to B with weight deg(E)
and decrease the weight of the edge to C by deg(E), so that the new
weight is V + Y deg(E)/2 � deg(E). This is guaranteed to be nonneg-
ative, since by Lemma 1 and the assumption that Y > 1 we have
Y deg(E)/2 > deg(E). This adjustment will change the value of the
minimum B-C cut by Vol('̄), but will not change the minimizer. In
what follows we assume we are working with this slightly altered
hypergraph; we overload the notation and still call thisHV .

Our strongly-local procedure works by starting with a subset of
HV and growing it as needed in search for a global minimum B-C cut
solution. We assume for this process that the hypergraph is given
by oracle accesses. For each E 2 + , let NE (E) = {4 2 E : 4 3 E} be
the set of hyperedges that E belongs to and NE (() =

–
E2( NE (E).

Let + (4) = {E : E 2 4} be the set of vertices that belongs to 4 and
+ (⇢) =

–
42⇢ + (4). Let NBC

(E) denote those terminal edges inci-
dent to E andNBC

(() =
–

E2( N
BC
(E). Given a vertex E 2 + or a hy-

peredge 4 2 E, we can e�ciently queryNE (E) or+ (4) respectively.
Combining these two oracles, we can e�ciently compute the vertex
neighborhood of one vertex N+ (E) = {D 2 + : 94 s.t. D, E 2 4}
and N+ (() =

–
E2( N+ (E). We also assume some simple metadata

are pre-stored together with the hypergraph, for example we can
query deg(E), deg(E) for any E , and |4 | for any 4 in$ (1) time. Hence
N

BC
(() can be constructed e�ciently.

Instead of building all of HV explicitly and computing the mini-
mum B-C cut, we alternate between the following two steps:
• On the local hypergraph L ✓ HV , compute a minimum B-C cut
induced by a vertex set (L where B 2 (L .

• Expand the local hypergraph L based on the min B-C cut (L
obtained in the above step.

This procedure ends at a point where we can certify that the B-C cut
on L is also a solution to the B-C cut on the entire hypergraph HV .
Concretely, let L = (+L [ {B, C}, EL [ E

BC
L
,6) where +L ⇢ + is a

subset of the vertices of the hypergraphH , EL is a subset of the
hyperedges in HV and E

BC
L
is the set of the terminal edges in HV

between +L and {B, C}, and 6 is the set of splitting functions corre-
sponding to EL [ E

BC
L
. We initialize +L to be ' [N+ ('), in other
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Algorithm 2 Strongly local method for solving Prob. 5 when Y > 1.

Input: ', Y, V , oracle access to a hypergraphH .
Output: ( minimizing Objective (8) for ? (() = YVol(( \ '̄)/2.
1: +L  ' [N+ ('), E!  NE ('), E

BC
L
 N

BC
(+L),-  '

2: repeat
3: (L = Solve min-st-cut in L

4: (new = (L \
�
- [ {B, C}

�
ù Grow local hypergraph L

5: +L  +L [N+ ((new)
6: EL  EL [NE ((new), E

BC
L
 E

BC
L
[N

BC
((new)

7: -  - [ (new
8: until (new = ;
9: return (L

words, the seed set union its vertex neighborhood. We initialize
EL to be NE ('), in other words, those hyperedges touching the
seed set '. Finally we initialize EBC

L
to be the terminal edges con-

nected to +L . When we grow L, we always guarantee it remains a
subhypergraph of HV , which means we always have

min-st-cutL 6 min-st-cutHV
. (9)

By carefully choosing how the local hypergraph L grows, we can
guarantee that the inequality will reach equality, without ever hav-
ing to explore the entire hypergraph. This growing process expands
L by considering nodes in (L and adding all of its neighboring
edges and nodes fromHV that are not already in the local hyper-
graph L. We speci�cally have the following two update rules:
• Update the vertex set by setting +L  +L [N+ ((L).
• Update the edge set by setting EL  EL [ NE ((L), E

BC
L
 

E
BC
L
[N

BC
((L).

To avoid adding the neighbor of one vertex multiple times, we keep
a list - and mark those vertices as explored. The algorithm ends
when (L does not introduce new vertices and edges. The whole
procedure is summarized in Algorithm 2. Theorem 3 guarantees
this will �nd the minimum B-C cut set, and Theorem 4 guarantees
it will have a strongly-local runtime. We defer the proof for these
results to the Appendix A.4.

T������ 3. When Y > 1, the optimal set ( returned by Algo-
rithm 2 minimizes the objective (8).

T������ 4. For Y > 1, the local hypergraph L will contain
$ ((Vol(') + |' |)X) hyperedges and at most$ ((Vol(') + |' |)XA ) ver-
tices where X = $ (Vol(') + �(')).

6 EXPERIMENTS
We implement our proposed algorithms in Julia. We preprocess all
the hypergraphs we use to remove dangling nodes, self-loops and
multihyperedges. We defer some of the low-level details of imple-
mentation and experiments to Appendix E. Our code is available at
https://doi.org/10.5281/zenodo.10681969.

To demonstrate the advantages and di�erences of the anchored
densest subhypergraphs found by Problems 5 and 6, we compare
them against running the anchored densest subgraph algorithm
on the clique expansions of hypergraphs [15]. The speci�c clique
expansions we consider are unweighted clique expansion (UCE)

0.25 0.50 0.75 1.00

F1
 S

co
re

0.2

0.4

0.6

0.8

FracVol
Vol
WCE

Figure 1: Solving Probs 5, 6 (Vol, FracVol) outperforms An-
chored Densest Subgraph (WCE) in planted set models. The
x-axis represents di�culty (<1/<2). Lines show mean F1
scores and bands show standard errors.

Table 2: Comparison between our Density Improvement (DI)
Framework shown in Algorithm 1 and the standard binary
search (BS). Time is the running time in seconds and itera-
tions represent the number of subproblems solved. |4 | indi-
cates the average hyperedge size.

Datasets = < |4 | DI BS

time iters time iters

Walmart 87k 65k 6.9 6.4 9 18.5 43
Trivago 173k 220k 3.2 10.1 10 26.3 42
Math SX 153k 563k 2.6 19.5 8 89.5 47
Ask Ubuntu 82k 114k 2.3 2.6 10 8.7 43
Amazon 4.2M 2.3M 17.2 2239 10 9333 54

and weighted clique expansion (WCE). For WCE, each hyperedge 4
will be replaced by one clique where each edge has weight 1

|4 | . For
UCE, it is replaced by one clique where each edge has weight 1.

6.1 Density Improvement vs. Binary Search
To demonstrate that our Density Improvement Framework shown
in Algorithm 1 has good performance in practice, we perform
comparison experiments against binary search on �ve di�erent
real-world hypergraph datasets, Walmart Trips [2], Amazon Re-
views [43], Trivago Clicks [14], Threads Ask Ubuntu and Threads
Math SX [7]. Since the search range and termination condition of
binary search get complicated when the complexity of the objective
function increases, here we simply study the densest subhyper-
graph problem , i.e. 5 (() = 4 [(]. Each subproblem is solved by the
same max. B-C �ow solver. We compare two methods’ running time
and number of subproblems solved. The results are summarized in
Table 2. We can see that on all �ve datasets, density improvement
shows about 3.5x speed up, which demonstrates it is practical.

6.2 Experiments with Planted Dense Sets
We �rst study the capacity of our objectives to �nd dense subhy-
pergraphs on problems with planted dense subsets. Speci�cally, we
build a graph with 1000 vertices and assign each vertex to one of
the 30 clusters uniformly at random similar to a stochastic block
model. Then we generate two kinds of hyperedges,<1 hyperedges
between clusters and<2 hyperedges inside clusters. This allows
us to plant 30 dense sets into this hypergraph. This is similar to

https://doi.org/10.5281/zenodo.10681969
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(a) A 1543 vertex, density 22.34
subhypergraph from Chinese universities

(b) A 1923 vertex, density 19.76
subhypergraph from on UK universities

(c) A 1356 vertex, density 23.51
subhypergraph from the intersection

Figure 2: We show sets of domains as a colored map based on the number of domains associated with that region normalized by
the total domains in the region. (Our attribution of domain to region is imperfect, but should capture general trends.)
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Figure 3: Running time comparison. The x-axis represents Y. We generate 100 di�erent ' for each dataset and run each method
on them. Here we report the mean and stderr of the running time. Speci�cally, each ' is generated by randomly sampling 10
seed nodes and then expanding them to a set with 200 nodes using random walks.

scenarios for planted partitions in uniform hypergraphs where each
hyperedge has the same size [20] and is inspired by various ideas
in random hypergraph and graph generation [1, 13, 23].

We let<2 = 50000, and then compare our objectives with the
baselines to see how well they can detect the underlying planted
densest subhypergraphs when we vary<1. The average hyperedge
size in the hypergraphs we generate is 5.7. For each cluster, we
generate 10 di�erent seed sets ' by sampling 5% vertices from that
cluster and performing length-2 random walks to grow it to a set
with size equal to 1.5 times the cluster size. In total, we generate
300 seed sets. For each objective, we compute F1 score between the
detected subhypergraph and the ground truth planted cluster.

The results are summarized in Figure 1. Here we do not show the
result for UCE as it exhibits similar behavior with WCE empirically.
We can see that when the planted dense structures are relatively
clear, i.e. the ratio <1

<2
is relatively small, both Vol and FracVol

penalty are able to perfectly detect the planted dense cluster while
WCE can not. As is expected, with<1 increasing, it is harder for
all methods to recover the planted dense cluster but FracVol has a
clear advantage throughout.

6.3 Densely linked domains on the web
We perform a case study on the webgraph demonstrating our lo-
cal dense subgraph tools’ utility in network analysis. We build a
domain-level hypergraph which has 147k vertices and 138k hy-
peredges, with average hyperedge size 11.3 from the host-level
webgraph data. One common phenomenon of densest subgraph
like objectives is that on real-world graphs, they usually do not
have large densest subgraphs. On this hypergraph, the densest sub-
hypergraph contains 105 nodes, 103 US domains and 2 UK domains
(Oxford, Cambridge) with density 45.73.

Our tools allow us to go beyond this simple set. Here we take
domains from the UK and mainland China as reference sets re-
spectively and vary Y from 0.0 to 1.5 to �nd large, and reasonably
dense subhypergraph. We identify one anchored densest subhy-
pergraph with size 1923 and density 19.76 from the UK, and one
anchored densest subhypergraph with size 1543 and density 22.34
from mainland China. By intersecting those two sets, we can get a
denser subhypergraph with 1356 nodes and density 23.51 that spans
universities throughout the world. This is illustrated in Figure 2.

6.4 Running Time Comparison
We compare runtime on real-world datasets and summarize results
in Figure 3. All methods run faster when Y is large and their running
time sharply decreases when Y enters the strongly local regime. Also,
in general our anchored densest subhypergraph solvers are faster
than clique expansion alternative when the hypergraph has a large
mean hyperedge size, e.g. Walmart Trips and Trivago Clicks.

7 CONCLUSION
We propose two localized densest subhypergraph objectives and
demonstrate their utility through experiments. Along the way, we
also prove several interesting results for the general densest sub-
graph discovery problem. Future directions are making the algo-
rithms scale to hypergraphs with billions of nodes and edges and
further exploring the space of localized objectives for di�erent sce-
narios.
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A PROOFS
A.1 Proof of Lemma 2
Since 5 is normalized, if V |( | � 5 (() < 0, then ( < ;. Therefore any
( satisfying V |( | � 5 (() < 0 has 5 (()/|( | > V . Meanwhile any (
with 5 (()/|( | > V naturally has V |( | � 5 (() < 0.

Further, notice that V |;|� 5 (;) = 0, hencemin(⇢+ V |( |� 5 (() 6
0 always holds. Asmin(⇢+ V |( |� 5 (() < 0 andmax(✓+ 5 (()/|( | >
V are equivalent, the complement of them are also equivalent.

A.2 Proof of Lemma 3
By our assumption, 3 (') is positive. Hence the optimal ( maximiz-
ing 3 (() has to intersect ', otherwise

4 [(] � YVol(( \ '̄)/2
|( |

=
4 [(] � YVol(()/2

|( |
6 0.

For an ( that intersects ', let� = ( \' and ⌫ = ( \ '̄ = ( \�. Then
4 [(] � YVol(( \ '̄)/2
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|( |
6 4 [( \ ']

|( |

6 4 [( \ ']

|( \ ' |
=
4 [�] � YVol(� \ '̄)

|�|
.

For the second inequality we use the fact that any hyperedge fully
contained in ( and intersecting ( \ '̄ is counted at least once in
Vol(( \ '̄). The last equality follows from the de�nition of �. This

Figure 4: A counter example for greedy peeling.

inequality shows that for any set ( intersecting ', removing vertices
outside ' will not make the answer worse. Thus it is equivalent to
maximizing 3 (() over ( ⇢ '.

A.3 Proof of Lemma 4
On the one hand, we know that 3⇤ > max(⇢' 3 (() > 3 (') = ⌦(1)
by assumption. On the other hand, observe that

3 (() =
4 [(] � YVol(( \ '̄)/2

|( |
6

Vol(() � 1
2Vol(( \ '̄)
|( |

6 Vol(() � Vol(( \ '̄)
|( |

6 Vol(( \ ')
|( \ ' |

6 �̄(') .

The �rst inequality relies on Eq. (6) and the second inequality
follows from Lemma 1.

A.4 Proofs for Lemma 5, Theorems 3 and 4
The proofs of these results are included in a longer version [27].

B COUNTEREXAMPLE FOR GREEDY PEELING
We adopt the greedy peeling algorithm for Problem 2 mentioned
in [11] (Theorem 3.1). For completeness, we restate it here. For
a normalized nonnegative supermodular set function 5 : 2+ !
R>0, we �rst initialize ( B + and then we recursively �nd E =
argmin
E2(

5 (E | ( � E) and update ( B ( \ {E} until ( becomes empty.

Here 5 (E | ( � E) B 5 (() � 5 (( \ {E}) is the marginal gain brought
by element E to the set ( . We see that when 5 (() = 4 [(] as in the
classical DSG, 5 (E | ( � E) becomes the degree of vertex E in the
subgraph ⌧ [(].

Now we are ready to present one example which shows that
greedy peeling may perform very poorly when 5 is not guaranteed
to be nonnegative. Here we give a counterexample on a graph,
which is a special case of a hypergraph. Consider the graph in
Figure 4, which contains two cliques linked by one edge. The clique
on the left-hand side contains 0 vertices and the clique on the right-
hand side contains 1 vertices. We let 1 = 90. We denote the left
clique by ' and the right clique by '̄ accordingly. We consider the
following objective

max
(⇢+

4 [(] � ? (()

|( |
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Figure 5: One counterexample that shows strong locality is
not guaranteed when Y < 1. It consists of three set of vertices
�,⌫,⇠, and they contain 0,1, 2 vertices respectively. � form a
clique and ⌫,⇠ are both independent sets. There is an edge
between each vertex of � and ⌫, in other words there is a
complete bipartite graph between them, the same holds for
⌫ and ⇠. The seed set ' is �. The degree for vertices in �,⌫,⇠
are 0 � 1 + 1,0 + 2 and 1 respectively. We let 2 � 1 � 0.

where ? (E) = 2
31 for E 2 '̄ and ? (E) = 0 for E 2 '. For this example,

greedy peeling will �rst remove vertices from ' as the marginal
gain brought by vertices from '̄ is at least 1

31 = 30 and on the
contrary the marginal gain brought by vertices from ' is at most
0. Hence greedy peeling will not start peeling o� vertices from '̄
until the whole ' is peeled o�. Then by symmetry, vertices from '̄
will be peeled o� in any random order.

We notice that when the intermediate subgraph only contains
vertices inside '̄, the objective is negative since 4 [(] � ? (() =�
|( |
2
�
�

2
31 |( | < 0.

When the intermediate subgraph still contains vertices from
', as pointed out before, at this time the whole clique inside '̄ is
also contained in the intermediate subgraph. Assume it contains G
vertices from ', then the objective now is

�G
2
�
+ 1 +

�1
2
�
�

2
31

2

G + 1
6

�0
2
�
+ 1 +

�1
2
�
�

2
31

2

1
< 0

as we let 1 = 90. This means the peeling algorithm will only output
a negative answer on this example as we treat 0/0 = �1. However
the optimal solution is choosing ( = ' and the optimum is 0�1

2 .

C EXAMPLE FOR Y < 1
We give one example illustrating why strong locality cannot be
guaranteed when Y < 1. The example is summarized in Figure 5.
The high-level intuition is that in this graph, the optimal answer
consists of all vertices, whose size is impossible to be bounded by a
polynomial of quantities only related to '. The detailed analysis is
included in a longer version [27].

D ADDITIONAL EXPERIMENTS
To demonstrate the e�ectiveness of our proposed methods, we
perform some additional experiments.

D.1 Density Improvement
We show that the density improvement framework described in
Algorithm 1 also has good performance on the ordinary dense
subgraph discovery problem. We perform comparison experiments
against binary search on �ve real-world datasets, HepPh, AstroPh [37],

Table 3: Comparison between our Density Improvement (DI)
Framework shown in Algorithm 1 and the standard binary
search (BS) for the ordinary dense subgraph discovery prob-
lem. Time is the running time in seconds and iterations rep-
resent the number of subproblems solved.

Datasets = < DI BS

time iters time iters

HepPh 11204 117619 0.29 4 1.97 35
AstroPh 17903 196972 1.17 7 5.21 37
Email-Enron 33696 180811 1.01 7 4.95 40
com-amazon 334863 925872 16.97 11 51.4 45
com-youtube 1134890 2987624 38.1 9 190.6 55
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Figure 6: Solving Probs 5, 6 exactly outperforms approximat-
ing them using greedy peeling.

Email-Enron [32, 38], com-amazon, and com-youtube [58]. The ex-
perimental results are summarized in Table 3. We can see that on
all �ve datasets, our framework exhibits consistent improvement
over binary search. Also, this Dinklebach-like framework demon-
strated usefulness in other graph tasks, e.g. cut improvement, see a
survey [19].

D.2 Comparison with Greedy Peeling
Greedy peeling is a prevalent approach for densest subgraph discov-
ery because of its simplicity and e�ciency. However, as shown in
Section B, greedy peeling may fail when the supermodular function
5 is not guaranteed to be non-negative. Here we conduct further
experiments to show some empirical evidence. On hypergraphs
with planted dense sets, we apply greedy peeling on objectives 5
and 6, and compare the returned solutions with the exact solutions
computed via �ow. The results are shown in Figure 6. We can see
that greedy peeling exhibits a much worse F1 score.

D.3 Comparison with Anchored Densest
Subgraph

In Section 6.2, we compare our algorithms against running the
anchored densest subgraph algorithm on the clique expansion of
hypergraphs about their abilities of detecting planted dense sets.
Here we provide some more empirical evidence with regard to their
objective values. For a seed set ' and a speci�c locality parameter
Y, we solve objectives 5 and 6 on the hypergraph and objective 3 on
the weighted clique expansion and unweighted clique expansion of
the hypergraph, and then compute objective 5 of the dense sets they
detect. In other words, we are comparing how well each of these
methods does at approximating objective 5. So we normalize the
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Table 4: Short descriptions of datasets used in the paper.

Datasets Description

Walmart sets of products bought on Walmart shopping
trips, where labels are departments of products

Trivago sets of hotels clicked on in a Web browsing ses-
sion, where labels are the countries of the ac-
commodation

Math SX sets of users asking and answering questions on
threads on math exchange

Ask Ubuntu sets of tags applied to questions on askubuntu
Amazon sets of products reviewed by users on Amazon,

where labels are product categories
ca-AstroPh Arxiv Astro Physics collaboration network
ca-HepPh Arxiv High Energy Physics (Phenomenology)

collaboration network
Email-Enron email communication network related to Enron
com-amazon product co-purchasing network on amazon
com-youtube social network based on friendship on youtube
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(b) Trivago Clicks
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(c) Threads Ask Ubuntu
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Figure 7: How well solving objective 6 or running the an-
chored densest subgraph objective 3 on the weighted or un-
weighted clique expansion of the hypergraph can approxi-
mately solve Problem 5. Objective values are normalized by
the optimum.

objective of all other sets by the objective of the set computed by
solving objective 5 and see how far they are from 1. From Figure 7,
we can see that running the anchored densest subgraph algorithm
usually cannot give a good result in terms of objective 5.

E MORE EXPERIMENT DETAILS
Throughout the paper, we solve minimum B-C cut problems using a
highest-label push-relabel algorithm with optimizations from [12].
Concretely, as is standard, for binary search, we let the search range
be [|E |/|+ |, �̄(+ )] and termination condition is when the search

range becomes shorter than 1/(|+ | ( |+ | � 1)) [34]. For our density
improvement, we let (0 = + .

E.1 Dataset Information
We provide somemore information about the datasets we use. The 5
real-world hypergraph datasets in Section 6.1 are available at https:
//www.cs.cornell.edu/~arb/data/ and the 5 real-world graph datasets
in Section D.1 are available at https://snap.stanford.edu/data/. We
summarize them in Table 4.

E.2 Construction of the Domain-Level
Hypergraph

We take the host-level data fromCommonCrawl (https://commoncrawl.
org/blog/host-and-domain-level-web-graphs-oct-nov-jan-2020-2021).
It contains 490 million nodes and 2.6 billion directed edges between
hosts. We build a domain-level hypergraph by forming one hyper-
edge for each host within a domain. The contents of the hyperedge
are all the domains linked from that host. We focus on the subgraph
induced by the domain names of educational and academic institu-
tions. Concretely, we take all domains ¢.edu, ¢.ac.¢ or ¢.edu.¢.

E.3 Hyperedge Generation for Experiments
with Planted Dense Sets

Each hyperedge is generated in a similar way. Given a vertex pool ( ,
we �rst sample two di�erent vertices from ( , and then we iteratively
grow the hyperedge. In each iteration, with probability ? we stop
the generating process and with probability 1�? we sample another
unique vertex from ( and continue to the next iteration. Once the
hyperedge reaches some pre-determinedmax size threshold, we end
the generating process. For those<1 hyperedges between clusters,
we let the vertex pool ( be the whole vertex set + and for those
<2 hyperedges inside clusters, we pick a random cluster for each
and set the vertex pool as vertices from that cluster. In this way, we
plant 30 dense subhypergraphs in this 1000-vertex hypergraph. We
let<2 = 50000, ? = 0.2 and set the max hyperedge size as 12. As
<1 increases, it will be much harder to detect the planted densest
subhypergraphs as the background hypergraph gets denser and
denser.

F ETHICS AND DATA
All of the data we use are publicly available and we do no mining
of the data for speci�c human identi�able attributes. Some of the
hypergraph data is based on public human activity, but we only
use those experiments to calibrate performance on commonly used
datasets. Our case study on the web graph is only based on linking
patterns among web hosts and domains. Our dense subhypergraph
tools have the potential to be used to identify extremal sets, which
– like many general-purpose mining tools – could be used mali-
ciously to infer attributes that people would prefer to stay secret if
the information was represented by a dense graph. However, we be-
lieve that dense subgraph analysis and subhypergraph analysis is a
common algorithmic framework that has substantial non-malicious
uses including novel studies of graph data and characterizing dense
interconnections in biological networks.
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